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L INTRODUCTION

Among the many existing rigorous methods for analyzing diffraction of electromagnetic waves

by diffraction gratings, the coupled-wave approach I stands out because of its versatility and simplicity.

It can be applied to volume gratings and surface relief gratings, and its numerical implementation is

much simpler than others. In addition, its predictions have been experimentally validated in several
cases _. These facts explain the popularity of the coupled-wave approach among many optical

engineers in the field of diffractive optics. However, a comprehensive analysis of the convergence

of the model predictions has never been presented, although several authors s" have recently reported

convergence difficulties with the model when it is used for metallic gratings in TM polarization.

In this short paper, we will make three points: (1) In the TM case, the coupled-wave approach

converges much slower than the modal approach of Botten et al.7_. (2) The slow convogence is caused

by the use of Fourier expansions for the pennit_i O, and the fields in the 8ratin$ region, and (37 is

manifested by the slow convergence of the eigenvalues and the _ted modal fields. The reader is
assumed to be familiar with the mathematical formulations of the coupled-wave approach and the

modal approach.

IL ANALYSIS

a. Two Types of Modal Approaches
There are two types of modal approaches: Modal Approach using a Scalar (characteristic)

Equation 7j (MASE) and Modal Approach using a Matrix (characteristic) Equation' (MAME). The

coupled.wave approach (CWA) is equivalent to a MAME. In the MASE, the eigenvalues and modal

fields in the grating region are solved one at a time from a scalar characteristic equation. Each modal
field thus found satisfies Maxwell's equations and the boundary conditions exactly. In the MAME,

however, N eigenvalues and modal fields are solved simultaneously from a matrix characteristic

equation. Unlera N = _, none of these modes satisfies Maxweli's equation exactly.

b. Two lOnds of Infinities
When solving grating problems by any method, one always has to deal with two kinds of

infinities: the infinity of the discrete set Z (the set of all integers), and the infinity of the continuum

[0,d), where d is the grating period. The first infinity is due to the periodicity of the grating, which

generates an infinite number of diffraction orders. The second infinity is related to the continuous
nature of Maxwell'$ equations. In any method, one has to solve Maxwell'$ equations on [0,d), with

the pseudo-_ boundary condition. In the MASE, the infinity of [0,d) is handled analytically.

The infinity of Z is not truncated until the matching of boundary conditions at the interfaces between

uniform regions and corrugated region is completed. In the MAME, the infinity of Z is handled
similarly. However, the infinity of [0,d) is transformed into that of the coefficients of the Fourier

expansions, which happens to be degenerate with the infinity of the diffraction orders. It is this

tempering of the infinity of [0,d) that leads to the slow convergence of the CWA.

c. Two Convergence Processes
In the CWA, the permittivity of the periodic medium in the grating region is represented by

its Fourier expansion. When this infinite expansion is truncated, the physical problem is changed (the

original discontinuous permittivity is changed to a smooth-varying one). Hence, both the

electromagnetic field and the grating profile are approximated as a result of the truncation. This

means that the convergence of the diffraction efficiency and phase values relies on the convergence
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of both the modal fields and the permittivity representation.

d. The Convergence Rates of Related Fourier Series

The analysis above indicates that the CWA, or the MAME in general, should be expected to

converge slower than the MASE. This point is reinforced by the following asymptotic analysis of the

Fourier coefficients for the permittivity and the fields. Let the permittivity be E(x+d) _- E(x), c(x)
= El, _r[ < a, and E(x) = E2, a < Ix] < d/'2. It is easy to check that c, = O(n "_) as n -. o,, where

c, is a Fourier coefficient of t(x). Evidently, the convergence of the permittivity expansion is very
slow.

We now consider the Fourier expansion coefficient, f,, of the fields. For TE polarization, the

boundary conditions demand that both the electric field and its derivative be continuous at the

permittivity discontinuity. Consequently, f, = O(nJ), as n -.._ For TM polarization, the magnetic

field is continuous, but its derivative is not. Instead, we have tl"l(dH/dx)l_.,,,o=G_'_(dH/dx)),._,,0_
therefore, f, = O(n_), as n -. _ Hence the Fourier expansion for a TM field converges slower than

that for a TE field. Next, suppose E_ = 1, and the polarization is "I'M. For a lossless dielectric

grating, E1 and E2are both positive; while for a metallic grating, t_ and Ei have different signs, if the

small imaginary part of tz is neglected. Accordingly, the H-field at the permittivity discontinuity in
a dielectric grating is "smoother" than it is in a metallic grating. In other words, the H-field has

weaker high frequency components in a dielectric grating than it has in a metallic grating. The
analysis above rationalizes why the CWA converges slower for TM polarization than for TE

polarization, and why it converges slower for metallic gratings than for dielectric gratings.
e. Eigenvalaesand Modal fields

The diWlcultyin the analysisof gratingsliesinthe accuratecharacterizationof the fieldsin

the gratingregion. For modal approaches of both types(includingthe CWA), thismeans that/t/s

imperativetodeterminethe eigenvaluesaccuratelybecause itistrivialto determine the modal fields

once the eigenvaluesare known. In the CWA approach, the eigenvaluesare solved from the

characteristic matrix equation, which is obtained from the truncated and slowly converging Fourier
expansions of the permittivity and the fields. Thus, the convergence of the eigenvalues is slow, as

numerically demonstrated in the next section.

NUMERICAL EXAMPl J_

Let us arbitrarily choose a f'med groove depth to wavelength ratio, say d/_.=l, from Fig. 3 of

Ref. 5 (a gold lamellar grating). We examine how the diffraction efficiencies and the eigenvalues

converge with the CWA and with the MASE. Our numerical implementation of the CWA is based

on the third paper in Ref. 1. The tnmcated matrix G, -1is obtained by numerically taking the inverse
of c..., as recommended by Moharam and Gaylord*. Our numerical implementation of the MASE

is based on Refit. 7 and & Both computer programs have been thoroughly checked against the
available results in the literature and against each other. In the following, N denotes the total

number of space-harmonics retained in the computations. For the results of the MASE, the number

of modal fields is set to equal N.

Figs. la and lb show the convergence of diffraction emciencies as N increases for TE and

TM polarizations. For both polarizations, the MASE converges extremely fast. For TE polarization,

the CWA converges reasonably fast toward the MASE. For TM polarization, however, the CWA
converges very slowly toward the MASE; in fact, it does not begin converging until N > 40.

Figs. 2a and 2b show the convergence of the real and imaginary parts of the square of the

tenth TE eigenvalue and the ninth TM eigenvalue, respectively. Similar to the convergence of

diffraction efficiencies, the TE eigenvalue computed with CWA converges reasonably fast toward that

computed with the MASE (dashed-lines), but the TM eigenvalue converges very slowly. We should

mention that all the TE eigenvalues computed with CWA converge at a rate similar to that in Fig.

2a, and some of the TM eigenvalues do converge faster than the one shown in Fig. 2b.
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Convergence of eigenvalues computed with coupled-wave approach.

IV. CONCLUSIONS

We have demonstrated with numerical examples that the predictions of the CWA converge

slowly toward those of the MASE of Botten et al. for metallic gratings in TM polarization. We have

shown that the slow convergence is caused by the use of slowly convergent Fourier expansions for

the permittivity and the fields in the grating region. Desp/t_ _ popu/at/ty, versatility, and simplicity,

the coupled-wave approach should be used with caution for metallic surface relief gratings in TM

po/ar/zat/on. Although we have only compared the CWA with the MASE, much of the analysis

applies to the MAME and differential methods utilizing Fourier expansions in general.
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